\begin{tabbing} (\=(((\=RW (RepeatC (UnfoldsC ``wellfounded guard so\_apply``) \+\+ \\[0ex]ANDTHENC AbReduceC) 0) \\[0ex] \-\\[0ex]CollapseTHEN (D 0))$\cdot$) \\[0ex]CollapseTHEN (UnivCD \-\\[0ex]THENW (Auto\_aux (first\_nat 1:n \\[0ex]) ((first\_nat 1:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$ \end{tabbing}